# Homework 2 in 18.085

### Due: Thursday, Sept 18

The first problems come from Section 1.4–5–6 of the CSE text. For this week (but not forever) I have reproduced them here. The last questions come from a paper in preparation on Master Equations.

**1.4** 7, 9, 11

**1.5** 9 (and find the eigenvalues by Matlab), 20

**1.6** 3,9

**Master Equations** 

(Outlined in red)

Here is one of the most useful formulas in linear algebra (it extends to  $T - UV^{T}$ ):

Woodbury-Sherman-Morrison 
$$K^{-1} = T^{-1} + \frac{T^{-1}uv^{T}T^{-1}}{1 - v^{T}T^{-1}u}$$
 (21)

The proof multiplies the right side by  $T - uv^{T}$ , and simplifies to I.

Problem 1.1.7 displays  $T^{-1} - K^{-1}$  when the vectors have length n = 4:

$$v^{\mathrm{T}}T^{-1} = \text{row 1 of } T^{-1} = \begin{bmatrix} 4 & 3 & 2 & 1 \end{bmatrix} \quad 1 - v^{\mathrm{T}}T^{-1}u = 1 + 4 = 5.$$

For any n,  $K^{-1}$  comes from the simpler  $T^{-1}$  by subtracting  $w^{\mathrm{T}}w/(n+1)$  with w=n:-1:1.

### Problem Set 1.4

For  $-u'' = \delta(x-a)$ , the solution must be linear on each side of the load. What four conditions determine A, B, C, D if u(0) = 2 and u(1) = 0?

$$u(x) = Ax + B$$
 for  $0 \le x \le a$  and  $u(x) = Cx + D$  for  $a \le x \le 1$ .

- Change Problem 1 to the free-fixed case u'(0) = 0 and u(1) = 4. Find and solve the four equations for A, B, C, D.
- Suppose there are *two* unit loads, at the points  $a = \frac{1}{3}$  and  $b = \frac{2}{3}$ . Solve the fixed-fixed problem in two ways: First combine the two single-load solutions. The other way is to find six conditions for A, B, C, D, E, F:

$$u(x) = Ax + B \text{ for } x \le \frac{1}{3}, \quad Cx + D \text{ for } \frac{1}{3} \le x \le \frac{2}{3}, \quad Ex + F \text{ for } x \ge \frac{2}{3}.$$

- Solve the equation  $-d^2u/dx^2 = \delta(x-a)$  with fixed-free boundary conditions u(0) = 0 and u'(1) = 0. Draw the graphs of u(x) and u'(x).
- Show that the same equation with free-free conditions u'(0) = 0 and u'(1) = 0 has no solution. The equations for C and D cannot be solved. This corresponds to the singular matrix  $B_n$  (with 1, 1 and n, n entries both changed to 1).
- Show that  $-u'' = \delta(x a)$  with **periodic** conditions u(0) = u(1) and u'(0) = u'(1) cannot be solved. Again the requirements on C and D cannot be met. This corresponds to the singular circulant matrix  $C_n$  (with 1, n and n, 1 entries changed to -1).
- A difference of point loads,  $f(x) = \delta(x \frac{1}{3}) \delta(x \frac{2}{3})$ , does allow a free-free solution to -u'' = f. Find infinitely many solutions with u'(0) = 0 and u'(1) = 0.
- 8 The difference  $f(x) = \delta(x \frac{1}{3}) \delta(x \frac{2}{3})$  has zero total load, and -u'' = f(x) can also be solved with periodic boundary conditions. Find a particular solution  $u_{\text{part}}(x)$  and then the complete solution  $u_{\text{part}} + u_{\text{null}}$ .

The distributed load f(x) = 1 is the integral of loads  $\delta(x - a)$  at all points x = a. The free-fixed solution  $u(x) = \frac{1}{2}(1 - x^2)$  from Section 1.3 should then be the integral of the point-load solutions  $(1 - x \text{ for } a \le x, \text{ and } 1 - a \text{ for } a \ge x)$ :

$$u(x) = \int_0^x (1-x) \, da + \int_x^1 (1-a) \, da = (1-x)x + (1-\frac{1^2}{2}) - (x-\frac{x^2}{2}) = \frac{1}{2} - \frac{1}{2}x^2. \text{ YES!}$$

Check the fixed-fixed case  $u(x) = \int_0^x (1-x)a \, da + \int_x^1 (1-a)x \, da = \underline{\qquad}$ .

If you add together the columns of  $K^{-1}$  (or  $T^{-1}$ ), you get a "discrete parabola" that solves the equation Ku = f (or Tu = f) with what vector f? Do this addition for  $K_4^{-1}$  in Figure 1.9 and  $T_4^{-1}$  in Figure 1.10.

Problems 11-15 are about delta functions and their integrals and derivatives.

- The integral of  $\delta(x)$  is the step function S(x). The integral of S(x) is the ramp R(x). Find and graph the next two integrals: the quadratic spline Q(x) and the cubic spline C(x). Which derivatives of C(x) are continuous at x = 0?
- The cubic spline C(x) solves the fourth-order equation  $u'''' = \delta(x)$ . What is the complete solution u(x) with four arbitrary constants? Choose those constants so that u(1) = u''(1) = u(-1) = u''(-1) = 0. This gives the bending of a uniform simply supported beam under a point load.
- 13 The defining property of the delta function  $\delta(x)$  is that

$$\int_{-\infty}^{\infty} \delta(x) g(x) dx = g(0) \quad \text{for every smooth function } g(x).$$

How does this give "area = 1" under  $\delta(x)$ ? What is  $\int \delta(x-3) g(x) dx$ ?

14 The function  $\delta(x)$  is a "weak limit" of very high, very thin square waves SW:

$$SW(x) = \frac{1}{2h} \quad \text{for} \quad |x| \le h \quad \text{ has } \quad \int_{-\infty}^{\infty} SW(x) \, g(x) \, \, dx \to g(0) \quad \text{as} \quad h \to 0.$$

For a constant g(x) = 1 and every  $g(x) = x^n$ , show that  $\int SW(x)g(x) dx \to g(0)$ . We use the word "weak" because the rule depends on test functions g(x).

15 The derivative of  $\delta(x)$  is the doublet  $\delta'(x)$ . Integrate by parts to compute

$$\int_{-\infty}^{\infty} g(x) \, \delta'(x) \, dx = -\int_{-\infty}^{\infty} (?) \, \delta(x) \, dx = (??) \text{ for smooth } g(x).$$

The free-fixed matrix  $T=T_6$  has T(1,1)=1. Check that its eigenvalues are  $2-2\cos\left[(k-\frac{1}{2})\pi/6.5\right]$ . The matrix  $\cos([.5:5.5]'*[.5:5.5]*pi/6.5)/sqrt(3.25)$  should contain its unit eigenvectors. Compute Q'\*Q and Q'\*T\*Q.

7 The columns of the Fourier matrix  $F_4$  are eigenvectors of the circulant matrix  $C = C_4$ . But [Q, E] = eig(C) does not produce  $Q = F_4$ . What combinations of the columns of Q give the columns of  $F_4$ ? Notice the double eigenvalue in E.

8 Show that the *n* eigenvalues  $2-2\cos\frac{k\pi}{n+1}$  of  $K_n$  add to the trace  $2+\cdots+2$ .

9  $K_3$  and  $B_4$  have the same nonzero eigenvalues because they come from the same  $4\times3$  backward difference  $\Delta_-$ . Show that  $K_3 = \Delta_-^{\mathrm{T}}\Delta_-$  and  $B_4 = \Delta_-\Delta_-^{\mathrm{T}}$ . The eigenvalues of  $K_3$  are the squared singular values  $\sigma^2$  of  $\Delta_-$  in 1.7.

Problems 10–23 are about diagonalizing A by its eigenvectors in S.

**10** Factor these two matrices into  $A = S\Lambda S^{-1}$ . Check that  $A^2 = S\Lambda^2 S^{-1}$ :

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$$
 and  $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ .

If  $A = S\Lambda S^{-1}$  then  $A^{-1} = (\ )(\ )(\ )$ . The eigenvectors of  $A^3$  are (the same columns of S)(different vectors).

12 If A has  $\lambda_1 = 2$  with eigenvector  $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $\lambda_2 = 5$  with  $x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , use  $S\Lambda S^{-1}$  to find A. No other matrix has the same  $\lambda$ 's and x's.

Suppose  $A = S\Lambda S^{-1}$ . What is the eigenvalue matrix for A + 2I? What is the eigenvector matrix? Check that  $A + 2I = (\ )(\ )(\ )^{-1}$ .

14 If the columns of S (n eigenvectors of A) are linearly independent, then

(a) A is invertible (b) A is diagonalizable (c) S is invertible

The matrix  $A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix}$  is not diagonalizable because the rank of A - 3I is \_\_\_\_\_. A only has one line of eigenvector. Which entries could you change to make A diagonalizable, with two eigenvectors?

16  $A^k = S\Lambda^k S^{-1}$  approaches the zero matrix as  $k \to \infty$  if and only if every  $\lambda$  has absolute value less than \_\_\_\_\_. Which of these matrices has  $A^k \to 0$ ?

$$A_1 = \begin{bmatrix} .6 & .4 \\ .4 & .6 \end{bmatrix}$$
 and  $A_2 = \begin{bmatrix} .6 & .9 \\ .1 & .6 \end{bmatrix}$  and  $A_3 = K_3$ .

# (1.5)

- **76** Chapter 1 Applied Linear Algebra
- 19 If all  $\lambda > 0$ , show that  $u^{T}Ku > 0$  for every  $u \neq 0$ , not just the eigenvectors  $x_{i}$ . Write u as a combination of eigenvectors. Why are all "cross terms"  $x_{i}^{T}x_{j} = 0$ ?

$$u^{\mathrm{T}}Ku = (c_{1}x_{1} + \dots + c_{n}x_{n})^{\mathrm{T}}(c_{1}\lambda_{1}x_{1} + \dots + c_{n}\lambda_{n}x_{n}) = c_{1}^{2}\lambda_{1}x_{1}^{\mathrm{T}}x_{1} + \dots + c_{n}^{2}\lambda_{n}x_{n}^{\mathrm{T}}x_{n} > 0$$

- Without multiplying  $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ , find
  - (a) the determinant of A (b) the eigenvalues of A
  - (c) the eigenvectors of A (d) a reason why A is symmetric positive definite.
- 21 For  $f_1(x,y) = \frac{1}{4}x^4 + x^2y + y^2$  and  $f_2(x,y) = x^3 + xy x$  find the second derivative (Hessian) matrices  $H_1$  and  $H_2$ :

$$H = \begin{bmatrix} \partial^2 f / \partial x^2 & \partial^2 f / \partial x \partial y \\ \partial^2 f / \partial y \partial x & \partial^2 f / \partial y^2 \end{bmatrix}.$$

 $H_1$  is positive definite so  $f_1$  is concave up (= convex). Find the minimum point of  $f_1$  and the saddle point of  $f_2$  (look where first derivatives are zero).

- The graph of  $z=x^2+y^2$  is a bowl opening upward. The graph of  $z=x^2-y^2$  is a saddle. The graph of  $z=-x^2-y^2$  is a bowl opening downward. What is a test on a,b,c for  $z=ax^2+2bxy+cy^2$  to have a saddle at (0,0)?
- Which values of c give a bowl and which give a saddle point for the graph of  $z = 4x^2 + 12xy + cy^2$ ? Describe this graph at the borderline value of c.
- 24 Here is another way to work with the quadratic function P(u). Check that

$$P(u) = \frac{1}{2} u^{\mathrm{T}} K u - u^{\mathrm{T}} f \quad \text{equals} \quad \frac{1}{2} (u - K^{-1} f)^{\mathrm{T}} K (u - K^{-1} f) - \frac{1}{2} f^{\mathrm{T}} K^{-1} f \,.$$

The last term  $-\frac{1}{2}f^{\mathrm{T}}K^{-1}f$  is  $P_{\mathsf{min}}$ . The other (long) term on the right side is always \_\_\_\_\_. When  $u=K^{-1}f$ , this long term is zero so  $P=P_{\mathsf{min}}$ .

- Find the first derivatives in  $f = \partial P/\partial u$  and the second derivatives in the matrix H for  $P(u) = u_1^2 + u_2^2 c(u_1^2 + u_2^2)^4$ . Start Newton's iteration (21) at  $u^0 = (1,0)$ . Which values of c give a next vector  $u^1$  that is closer to the local minimum at  $u^* = (0,0)$ ? Why is (0,0) not a global minimum?
- **26** Guess the smallest 2, 2 block that makes  $\begin{bmatrix} C^{-1} & A; & A^{T} & \_ \end{bmatrix}$  semidefinite.
- 27 If H and K are positive definite, explain why  $M = \begin{bmatrix} H & 0 \\ 0 & K \end{bmatrix}$  is positive definite but  $N = \begin{bmatrix} K & K \\ K & K \end{bmatrix}$  is not. Connect the pivots and eigenvalues of M and N to the pivots and eigenvalues of H and K. How is  $\operatorname{chol}(M)$  constructed from  $\operatorname{chol}(H)$  and  $\operatorname{chol}(K)$ ?

3 A different A produces the circulant second-difference matrix  $C = A^{T}A$ :

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{gives} \quad A^{\mathrm{T}}A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}.$$

How can you tell from A that  $C = A^{T}A$  is only semidefinite? Which vectors solve Au = 0 and therefore Cu = 0? Note that chol(C) will fail.

Confirm that the circulant  $C = A^{T}A$  above is semidefinite by the pivot test. Write  $u^{T}Cu$  as a sum of two squares with the pivots as coefficients. (The eigenvalues 0, 3, 3 give another proof that C is semidefinite.)

5  $u^{\mathrm{T}}Cu \geq 0$  means that  $u_1^2 + u_2^2 + u_3^2 \geq u_1u_2 + u_2u_3 + u_3u_1$  for any  $u_1, u_2, u_3$ . A more unusual way to check this is by the Schwarz inequality  $|v^{\mathrm{T}}w| \leq ||v|| ||w||$ :

$$|u_1u_2 + u_2u_3 + u_3u_1| \le \sqrt{u_1^2 + u_2^2 + u_3^2} \sqrt{u_2^2 + u_3^2 + u_1^2}$$

Which u's give equality? Check that  $u^{T}Cu = 0$  for those u.

**6** For what range of numbers b is this matrix positive definite?

$$K = \left[ \begin{array}{cc} 1 & b \\ b & 4 \end{array} \right] .$$

There are two borderline values of b when K is only semidefinite. In those cases write  $u^{\mathrm{T}}Ku$  with only one square. Find the pivots if b=5.

7 Is  $K = A^{T}A$  or  $M = B^{T}B$  positive definite (independent columns in A or B)?

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

We know that  $u^{T}Mu = (Bu)^{T}(Bu) = (u_1 + 4u_2)^2 + (2u_1 + 5u_2)^2 + (3u_1 + 6u_2)^2$ . Show how the three squares for  $u^{T}Ku = (Au)^{T}(Au)$  collapse into one square.

Problems 8–16 are about tests for positive definiteness.

Which of  $A_1, A_2, A_3, A_4$  has two positive eigenvalues? Use the tests a > 0 and  $ac > b^2$ , don't compute the  $\lambda$ 's. Find a vector u so that  $u^T A_1 u < 0$ .

$$A_1 = \begin{bmatrix} 5 & 6 \\ 6 & 7 \end{bmatrix} \qquad A_2 = \begin{bmatrix} -1 & -2 \\ -2 & -5 \end{bmatrix} \qquad A_3 = \begin{bmatrix} 1 & 10 \\ 10 & 100 \end{bmatrix} \qquad A_4 = \begin{bmatrix} 1 & 10 \\ 10 & 101 \end{bmatrix}.$$

**9** For which numbers b and c are these matrices positive definite?

$$A = \begin{bmatrix} 1 & b \\ b & 9 \end{bmatrix}$$
 and  $A = \begin{bmatrix} 2 & 4 \\ 4 & c \end{bmatrix}$ .

With the pivots in D and multiplier in L, factor each A into  $LDL^{\mathrm{T}}$ .

## Master Equations

#### Gilbert Strang and Shev Macnamara

Master equations are blessed with an impressive name. They are linear differential equations

$$\frac{\mathrm{d}p}{\mathrm{d}t} = Ap$$

for a probability vector p(t) (with nonnegative components that sum to 1). The matrix A has special structure: nonnegative off-diagonals, and zero column sum. The master equation governs the continuous time evolution of the probability distribution of a Markov process with discrete states. The probability of being in state j is given by  $p_j$ , and  $a_{ij}dt$  is approximately the probability for the state to change from j to i in a small time interval dt. Given an initial probability distribution p(0), the solution is a matrix exponential  $p(t) = e^{tA}p(0)$ .

An example is the tridiagonal second difference matrix A with diagonals 1, -2, 1, except that  $A_{11} = A_{NN} = -1$ . This is minus the *graph Laplacian* on a line of nodes. Finite difference approximations to the heat equation with Neumann boundary conditions use the same matrix:  $du/dt = (A/h^2)u$ .

Another example is the matrix in the master equation for the the bimolecular reaction,

$$A + B \leftrightarrows C$$

where a molecule of A chemically combines with a molecule of B to form a molecule of C. The associated matrix is *not symmetric*:

There is always a directed graph associated with a master equation, which helps to find the matrix – an explanation of the graph and the matrix is coming in a moment. In the mean time, MATLAB makes this example (N=5 here, but you will try larger examples!):