Homework 2 in 18.085

Due: Thursday, Sept 18

The first problems come from Section 1.4—5-6 of the CSE text. For this week (but not forever) |
have reproduced them here. The last questions come from a paper in preparation on Master

Equations.

1.4 7,9,11

1.5 9 (and find the eigenvalues by Matlab), 20
1.6 3,9

Master Equations

(Outlined in red)
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Here is one of the most useful formulas in linear algebra (it extends to 7'— U Py

Woodbury-Sherman-Morrison K-1— -1 T lupTT-1 (21)
Inverse of K = T — yoT N 1—oTT-1y

The proof multiplies the right side by 7' — uvT, and simplifies to I.
Problem 1.1.7 displays 7-' — K~ when the vectors have length n = 4:

VT = row 1of TV =[4 3 2 1] 1-0"T%u=14+4=5

For any n, K~ comes from the simpler 7"~ by subtracting wTw/(n+1) with w =n:—1:1.

Problem Set 1.4

For —u” = §(z — a), the solution must be linear on each side of the load. What
four conditions determine 4, B, C, D if u(0) = 2 and u(1) = 07

u(z) = Az + B for 0<z<a and u(z)=Cz+D for dszx1.

Change Problem 1 to the free-fixed case v’ (0) = 0 and u(1) = 4. Find and solve
the four equations for A, B, C,D.

Suppose there are two.unit loads, at the points q = % and b = § Solve the
fixed-fixed problem in two ways: First combine the two single-load solutions.
The other way is to find six conditions for A,B,C,D,E, F:

1 2 2
u(z) = Az + B for mgg, Cz+ D for %ngg, Erx+ F for z > 3
Solve the equation —d?u/dz? = § (z — a) with fixed-free boundary conditions
u(0) =0 and /(1) = 0. Draw the graphs of u(x) and u'(x).

Show that the same equation with free-free conditions v'(0) = 0 and %/(1) = 0
has no solution. The equations for C' and D cannot be solved. This corresponds
to the singular matrix B, (with 1,1 and n,n entries both changed to 1).

Show that —u” = §(z — a) with periodic conditions u(0) = u(1) and v/(0) =
/(1) cannot be solved. Again the requirements on C' and D cannot be met.

This corresponds to the singular circulant matrix Cy (with 1,n and n, 1 entries
changed to —1)

A difference of point loads, f@) = &
free solution to —u”
w'(1) = 0.

T — 3) = 6(z — 2), does allow a free-
= f. Find infinitely many solutions with u'(0) = 0 and

The difference f(z) = §(z — 3)—d(z — 2) has zero total load, and —u" = f(z)

can also be solved with periodic boundary conditions. Find a particular solution
Upart(z) and then the complete solution Upart + Unyl.
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1.4 Inverses and Delta Functions 45

The distributed load f(z) = 1 is the integral of loads §(z — a) at all points
z = a. The free-fixed solution u(z) = (1 — z?) from Section 1.3 should then be
the integral of the point-load solutions (1 — z for a < z, and 1 — a for a > z):

2 x? 11

u(z) = /Om(l—sc) da—l—/ (1—a)da = (1—x)x+(1—3)—($—‘2—) = 5_‘2“37 - YES!

Check the fixed-fixed case u(z) = fo (1 — z)ada + f (1 —a)rda =

10

Problems 11-15 are about delta functions and their integrals and derivatives.

If you add together the columns of K g (or T ) you get a dlscrete parabola
that solves the equation Ku = f (or Tu = f) with what vector f? Do this
addition for K ! in Figure 1.9 and T, in Figure 1.10.

11

The integral of 6(z) is the step function S(z). The integral of S(z) is the ramp
R(z). Find and graph the next two integrals: the quadratic spline Q(z) and
the cubic spline C(z). Which denvatlves of C ( ) are continuous at z = 07

12

13

14

15

The cubic spline C(z) solves the fourth—order equation u"" = 6(z). What is the
complete solution u(z) with four arbitrary constants? Choose those constants
so that u(1) = u”(1) = u(—1) = u”(—1) = 0. This gives the bending of a
uniform simply supported bearn under a point load.

The defining property of the delta function §(x) is that

/ d(z) g(z) dz = g(0) for every smooth function g(z).

How does this give “area = 1” under 6(z)? What is [d(z — 3) g(z) dz?

The function §(z) is a “weak limit” of very high, very thin square waves SW:
1 (oo}
W(a)= o for o] <h bas / SW() alz) d— g(0) 88 K—s 0.

For a constant g(z) = 1 and every g(z) = z", show that [ SW(z)g(z)dz —
9(0). We use the word “weak” because the rule depends on test functions g(z).

The derivative of 6(z) is the doublet ¢'(z). Integrate by parts to compute

/_oo g(z) &' (z) de = — [w(?) §(z) dz = (?7) for smooth g(z).

o0 (o]
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Construct B = By and [Q, E] = eig(B) with B(1,1) = 1 and B(6,6) = 1. Verify
that £ = diag(e) with eigenvalues 2% ones(1,6) —2*cos([0 : 5] pi/6) in e. How
do you adjust @ to produce the (highly important) Discrete Cosine Transform
with entries DCT = cos([.5: 5.5]" % [0: 5] % pi/6)/sqrt(3) ?

The free-fixed matrix T" = T has T(1,1) = 1. Check that its eigenvalues are
2—2cos [(k — 3)7/6.5]. The matrix cos([.5 : 5.5]' % [.5 : 5.5]pi/6.5)/sqrt(3.25)
should contain its unit eigenvectors. Compute Q' * @Q and Q' * T Q.

The columns of the Fourier matrix Fy are eigenvectors of the circulant matrix
C = Cy. But [Q, E] = eig(C) does not produce ) = Fy. What combinations of
the columns of @) give the columns of F;? Notice the double eigenvalue in E.

Show that the n eigenvalues 2 — 2 cos —ni:il of Kpn add to the trace 2 + - 2.

K3 and By have the same nonzero eigenvalues because they come from the same
4x3 backward difference A_. Show that K3 = A_TA_ and B, = A_A_T. The
eigenvalues of K3 are the squared singular values 02 of A_ in 1.7.

-

Problems 10-23 are about diagonalizing A by its eigenvectors in S.
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11
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Factor these two matrices into A = SAS~!. Check that A% = SA29-1:
1 2 11
A= [0 3} and A= [2 2].

If A= SAS™' then A" = ( )( )( ). The eigenvectors of A® are (the same
columns of S)(different vectors).

If A has \; = 2 with eigenvector z; = [(1)] and Ay = 5 with zy = H], use
SAS~! to find A. No other matrix has the same \'s and z’s.

Suppose A = SAS~!. What is the eigenvalue matrix for A + 2I? What is the
eigenvector matrix? Check that A+27 =( )( )( )%

If the columns of S (n eigenvectors of A) are linearly independent, then
(a) Aisinvertible  (b) A is diagonalizable (c) S is invertible

The matrix A = [§ 1] is not diagonalizable because the rank of A— 3/ is

A only has one line of eigenvector. Which entries could you change to make A
diagonalizable, with two eigenvectors?

AF = SA*S~1 approaches the zero matrix as k — oo if and only if every A has
absolute value less than . Which of these matrices has A* — 07

6 4 6 .9
A1 = [4 6:l and A2 = [1 6:! and A3 = Kg.
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Chapter 1 Applied Linear Algebra

If all A > 0, show that wTKu > 0 for every u # 0, not just the eigenvectors z;.
Write u as a combination of eigenvectors. Why are all “cross terms” i R

uwTKu = (clxl+--+cnxn)T(cl)\1x1+--+cn)\n:vn) S W N +EAz Tz, >0

: o cosf —sinf| [2 0 cos siné
Without multiplying A = [ sinf  cos GJ [ 0 5J {_ - HJ’ find

(2) the determinant of A (b) the eigenvalues of A
(c) the eigenvectors of A (d) a reason why A is symmetric positive definite.
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For fi(z,y) = 12*+z%y+y? and fo(x,y) = 23+zy—2 find the second derivative
(Hessian) matrices H; and Ho:

02 f | 0z? 82f/6z8yJ

a= [02f/8y893 01 /0y

H, is positive definite so f; is concave up (= convex). Find the minimum point
of fi and the saddle point of f, (look where first derivatives are Z€ro).

The graph of z = 2° + y* is a bowl opening upward. The graph of z = 22 — 2
is a saddle. The graph of z = —z? — y? is a bowl opening downward. What is
a test on a,b, ¢ for z = ax? + 2bxy + cy? to have a saddle at (0,0) ?

Which values of ¢ give a bowl and which give a saddle point for the graph of
z = 4% 4+ 12zy + cy?® ? Describe this graph at the borderline value of c.

Here is another way to work with the quadratic function P(u). Check that
1z i 1 -1 T g Lerra
P(u)ziu Ku—wu [ equals g(u—K ' Ku—-K f)—if K'f.
The last term —5 fTK " f is Pp,. The other (long) term on the right side is
always . When u = K~1f, this long term is zero so P = B

Find the first derivatives in f = OP/0u and the second derivatives in the matrix
H for P(u) = uf+uj — c(uf +uf)*. Start Newton’s iteration (21) at u® = (1,0).
Which values of ¢ give a next vector u! that is closer to the local minimum at
u* = (0,0)? Why is (0,0) not a global minimum ?

Guess the smallest 2, 2 block that makes [C~1 A; AT | semidefinite.

If H and K are positive definite, explain why M = []g [O(J is positive definite

but N = [Ifg Ifﬂ is not. Connect the pivots and eigenvalues of M and N

to the pivots and eigenvalues of H and K. How is chol(M) constructed from
chol(H) and chol(K)?
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74  Chapter 1 Applied Linear Algebra
_f 3 A different A produces the circulant second-difference matrix C' = ATA:
1 -1 0 2 -1 -1
A= 0 1 =1 gives ATA=|-1 2 -1/]. |
-1 0 1 -1 -1 2 ’
How can you tell from A that C = AT A is only semidefinite? Which vectors
{ solve Au = 0 and therefore Cu = 0? Note that chol(C) will fail. |
— S|

4

e ————————————————

4 Confirm that the circulant C = ATA above is semidefinite by the pivot test.
Write u"Cu as a sum of two squares with the pivots as coefficients. (The
eigenvalues 0, 3,3 give another proof that C is semidefinite. )

5 uTCu > 0 means that uf + ud +u? > ugus + ugug + ugu; for any wui, us, uz. A
more unusual way to check this is by the Schwarz inequality Tw| < ||v|| Jw]:

[urus + ugus + uzuy| < \/u%+u§+u§ \/ug—i—u%—i—u%

Which u’s give equality ? Check that uTCu = 0 for those .
6 For what range of numbers b is this matrix positive definite ?
1 b
K= { ! J |
There are two borderline values of b when K is only semidefinite. In those cases
write wT Ku with only one square. Find the pivots if b = 5.

7 Is K =A"A or M = BTB positive definite (independent columns in A or B)?

2 1 4
A= 4 B=]2 5
6 3 6

1

2

3
We know that " Mu = (Bu)T(Bu) = (u; 4 4u)? + (2u; + 5ug)? + (3uy + 6uy)2.
Show how the three squares for uTKu = (Au)T(Au) collapse into one square.

Problems 8-16 are about tests for positive definiteness.

8 Which of A, Ay, A3, A4 has two positive eigenvalues ? Use the tests ¢ > 0 and
ac > b?, don’t compute the A's. Find a vector  so that uTAju < 0.

56 -1 -2 1 10 110
Al‘[fs 7J A2‘[—2 —5] A3_[10 100} A4—(1o 101}

|

9 AForwwhlchnllmbers ‘b‘and c are these matrices positive definite ? |
‘ 1 b 24
j A*[b QJ and A—L CJ' i

With the pivots in D and multiplier in L, factor each A into LDLT.

— ST,




Master Equations

Gilbert Strang and Shev Macnamara

Master equations are blessed with an impressive name. They are linear differential equa-

tions

dp _ Ap

dt
for a probability vector p(t) (with nonnegative components that sum to 1). The matrix A
has special structure: nonnegative off-diagonals, and zero column sum. The master equation
governs the continuous time evolution of the probability distribution of a Markov process with

discrete states. The probability of being in state j is given by p;, and a;;d¢ is approximately
the probability for the state to change from 7 to ¢ in a small time interval d¢. Given an initial
probability distribution p(0), the solution is a matrix exponential p(t) = et4p(0).

An example is the tridiagonal second difference matrix A with diagonals 1, —2, 1, except
that A;; = Ayy = —1. This is minus the graph Laplacian on a line of nodes. Finite difference
approximations to the heat equation with Neumann boundary conditions use the same matrix:
du/dt = (A/h?)u

Another example is the matrix in the master equation for the the bimolecular reaction,

A+BSC

£

where a molecule of A chemically combines with a molecule of B to form a molecule of C.
The associated matrix is not symmetric:

@@@@@

©f-16 1 0 0
@16—10200

A=) 0o 9 -6 3 0 | (1)

There is always a directed graph associated with a master equation, which helps to find the
matrix — an explanation of the graph and the matrix is coming in a moment. In the mean time,
MATLAB makes this example (N = 5 here, but you will try larger examples!):

(o) Chansm. o diegonel wutia D ss ek DADT U8
,‘4“‘ slaseoly Athet A o el &\le_n%(\ﬂrs‘

nvolass et cowa Sme T Mool aade
((9) [ g (o Se= Aomescal chstebil ‘57 o=t ek

'( ww\g:\.m -

fliplr(f); s = b+f;
e = eig(full(dr));



